Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Infect Dis ; 24(1): 112, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38254046

ABSTRACT

BACKGROUND: The World Health Organization (WHO) declared Coronavirus Disease 2019 (COVID-19) a global pandemic on March 11, 2020. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection has killed millions of people and had a terrible effect on society. The transmembrane protease serine 2 (TMPRSS2) enzyme is essential in the initial phases of the interplay between the SARSCoV-2 and the host cells by assisting viral entrance. METHODS: This observational case-control study involved 150 participants, 100 adult patients with COVID-19, 50 of whom appeared healthy and had no history of or symptoms of COVID-19 infection when the study was conducted. Between January and April 2022, patients were taken as inpatients in isolation units or through recruitment from the COVID-19 clinic at Kasr Al-Ainy Cairo University Hospitals. According to the National Institutes of Health guidelines (2021), they were categorised into three categories: mild, moderate, and severe. TMPRSS2 p.(Val197Met) variant genotyping was evaluated using TaqMan Real-Time PCR. RESULTS: The study showed a substantial difference between the mild and severe COVID-19 patient groups regarding their TMPRSS2 (p.Val197Met) genotypes (P value = 0.046). The C allele was significantly more prevalent in the mild, moderate and severe COVID-19 patient categories (77.8%, 89.7% and 91.7%, respectively) and the control group (80%). Meanwhile, the T allele was more prevalent in the mild (22.2%) and control (20%) groups. There was a statistically significant difference in allelic distribution between the mild and severe groups (P value = 0.034). CONCLUSION: The study showed a connection between the TMPRSS2 gene variant p.(Val197Met) and the degree of illness. We concluded that the T(mutant) allele was protective against severe COVID-19 because it was linked to lesser disease severity.


Subject(s)
COVID-19 , Serine Endopeptidases , Adult , Humans , Alleles , Case-Control Studies , COVID-19/genetics , Genotype , SARS-CoV-2/pathogenicity , Serine Endopeptidases/genetics , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...